

PROPOSED SUBDIVISION

109 OLD PETERBOROUGH ROAD

PETERBOROUGH

REPORT NO: 122818

WESTROCK PTY LTD PO Box 552 CROYDON VIC 3136

Table of Contents

1.	INTRODU		
	1.1	Investigation Requested by	
	1.2	Purpose of Investigation	
	1.3	Geology	
	1.4	Field Methods	2
2.	RESULTS		2
	2.1	Site Description	2
	2.2	Borehole Drilling	3
	2.3	Subsurface Soil Profile	3
	2.4	Ground Water	3
3	DISCUSSIO	ON	4
Li	st of Tal	bles	
Та	ble 1: Sumr	mary of Subsurface Profile	3
Li	st of Fig	ures	
	=		2
Fig	nire 2: Groi	ınd Water Tahle	4

HEAD OFFICE 15 Libbett Avenue Clayton South VIC 3169 t: 03 9547 4811

e: melb@asjames.com.au

73-77 Humffray Street North Ballarat East VIC 3350 t: 03 5333 5911 e: ballarat@asjames.com.au

BALLARAT LABORATORY

1/16 Libbett Avenue Clayton South VIC 3169 t: 03 9562 4709 e: lab@asjames.com.au

1. INTRODUCTION

1.1 Investigation Requested by

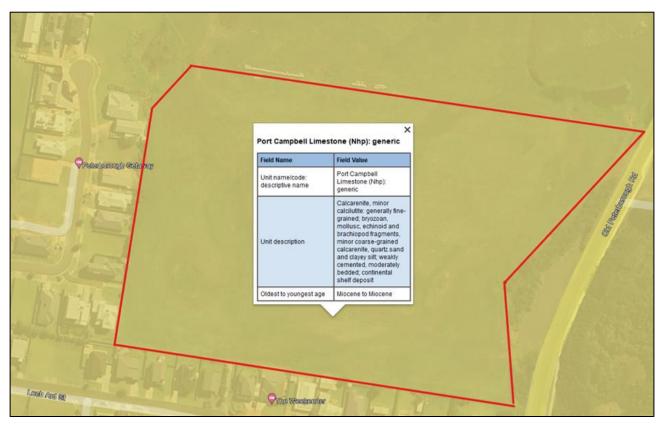
The geotechnical investigation was commissioned by authorisation of engagement in response to our fee proposal CO22376 dated 15 March 2024.

1.2 Purpose of Investigation

It is proposed to subdivide land at 109 Peterborough Road, Peterborough. It was required to supplement a resistivity imaging survey with selected boreholes to investigate the likelihood of cavities (casts).

The goals of the geotechnical investigation are outlined as follows:

- Review the available information such as geological maps.
- Establish the subsurface profile, including groundwater condition from boreholes at six (6) sites.
- Provide comments in relation to the likelihood of cavities.


1.3 Geology

The seamless Geology 250,000 map indicates the subject site to be underlain by Miocene deposits known as Port Campbell limestone. Typically, these deposits comprise sands and silt underlain by moderate strength clays. The clays, which are generally of a moderate to high plasticity, grade to medium dense sands. The sedimentary deposits are interbedded clays and sands.

Cavities or casts are expected to develop along with a description.

The geology map is depicted below.

Figure 1: Geological Map

Geological Map – 250k Seamless Geology of Melbourne

1.4 Field Methods

As part of our geotechnical investigation the following field methods were incorporated:

- i) Auger Drilling: The boreholes were drilled using a truck mounted Gemco HP7 rotary drilling rig and equipped with continuous flight 90-millimetre diameter augers fitted with a tungsten carbide drill bit.
- ii) In-situ Vane Shear Strength Testing: In-situ vane shear strength testing was carried out within the cohesive soils at shallow depths using a Pilcon hand vane tester. The tests were conducted in accordance with the test procedure outlined in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes". Test Method 6.2.1.
- **Standard Penetration Testing**: Standard penetration testing was conducted within the boreholes in accordance with the test procedure outlined in Australian Standard 1289, "Methods of Testing Soils for Engineering Purposes," Test Method 6.3.1.
- **iv)** Logging of Soil Profiles: The subsurface profile encountered in the borehole was logged in accordance with Australian Standard AS 1726 2017, "Geotechnical Site Investigations."

2. RESULTS

2.1 Site Description

At the time of the investigation the following site features were noted.

- The site is slightly sloping and at times essentially flat.
- The drainage of the site is considered to be moderate.

• No boulders or rock are visible on the ground surface level, and none could be expected below ground level at shallow depth.

- The site has a moderate cover of grass.
- The site is vacant.

2.2 Borehole Drilling

Six (6) boreholes were drilled at the approximate locations as indicated on **Figure 1**, with these locations nominated by GPS ordinates. The logs of the boreholes, together with the result of in-situ vane shear strength and Standard Penetration testing carried out within the boreholes, are given on **Figures 2 - 7**.

2.3 Subsurface Soil Profile

The following table summarises the sub-surface profile.

Table 1: Summary of Subsurface Profile

Bore No.	Bore No. Fill (m)		Clay (CL/CH) (m)	Sand (SM/SC) (m)	
1	-	0 – 0.6	0.6 – 4.5	4.5 – 6.5	
2	-	0 – 0.2	0.2 – 3.5	3.5 – 6.5	
3	-	0 – 0.3	0.3 – 5.5	5.5 – 6.5	
4	-	0 – 1.1	1.1 – 6.5	-	
5 -		0 – 0.6	0.6 – 6.5	-	
6	-	0 – 0.7	0.7 – 6.5	-	

Borehole logs are provided on **Figures 2 - 7** and should be referred to for details. A Summary of the geological units encountered are provided below:

Fill: Not encountered, but the surface of the silt appeared, at times, to have been disturbed.

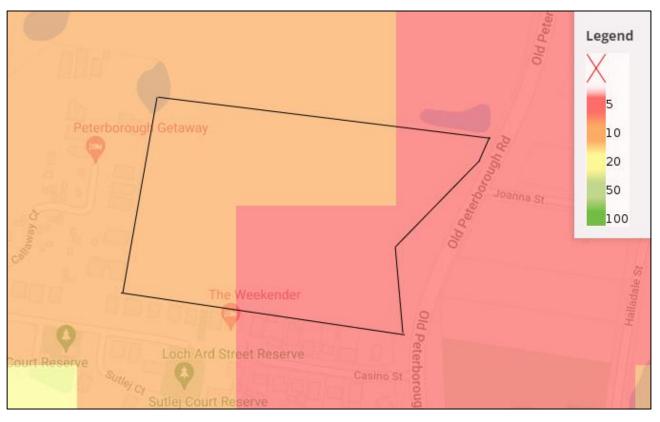
Silt (SM/ML): Medium dense sandy silt.

Clay (CH/CL): In all the boreholes, underlying the silt, layers of clay were encountered. The clays encountered were silty and sandy, and of moderate to high plasticity. The clay, at times, was gravelly and stiff.

Sand (SC/SM): In boreholes 1, 2 and 3 the clay layer is underlain by a layer of medium dense silty sand.

Considering the logs of the boreholes the following should be noted:

• In bores 1 and 6 at depths of 4.5m and 6.5m respectively extremely loose/soft material was encountered.


2.4 Ground Water

Groundwater was encountered at the time of the site investigation at 4.5-5.8m in bores 1, 2 and 6. It should also be noted that it is likely for a temporary perched water table to develop within the surface silt overlying the relatively impermeable clays.

It should also be noted, that following prolonged periods of rainfall the surface granular silt and shallow clays will be susceptible to moisture ingress, thereby significantly reducing the workability and strength of both the surface soils and the underlying clays at shallow depths.

Visualising Victoria's Groundwater map portal was checked and reveals an approximate groundwater level is in the order of 5.0 - 10.0 metres below the ground surface level at the subject site and this appears in line with our borehole drilling results. Some variation could, however, be expected.

Figure 2: Ground Water Table

Visualising Victoria's Groundwater

3. DISCUSSION

The logs of the bores should be referred to the author of the resistivity imaging survey (Ander Guinea) for correlation with his results

The following points are made.

- There is a significant cover of stiff clay existing on the site and this will serve as significant bridging and localised cavities within the underlying limestone of a small nature, will be bridged.
- We have encountered two (2) soft zones in boreholes 1 and 6 at depths of 4.5m and 6.5m respectively, where more caverns may have been encountered in the lower sand profile.
 - These are of little concern in that they did not appear to be caverns as such, but may have been old caverns with water resulting in them being filled in a loose manner with sand.
 - These minor pockets appear to be associated with the presence of moisture or water.
- The development of this site should concentrate on good surface run-off and good surface drainage to minimise the ingress of water into the underlying materials.


• Allied to this previous bullet point is the fact that a perched water table will develop on this site in the more silty materials overlying the clay, and good drainage will help mitigatae this issue.

• Further shallow bores have been carried out and are reported in our report reference 122818/A, and they have encountered similar profiles to those encountered in this report.

Should any point remain in doubt please do not hesitate to contact this office.

Under no circumstance should this report be reproduced unless in full.

APEC Engineer IntPE(Aus)PE0003708 Managing Director A.S.JAMES PTY LTD Director
A.S.JAMES PTY LTD

JOB: 109 OLD PETERBOROUGH ROAD

PETERBOROUGH

JOB No: 122818 DATE: APR '24

Denotes Approximate 6.0m Borehole Location (Boreholes 1 - 6)

CHECKED: DRAWN:

SOURCE:

FIGURE 1

A.S.JAMES PTY. LTD.			Location:	Borehole 1			
Geote	Geotechnical Engineers		Job No.	Peterb 12281	orough	1	Date: April '24
			Ground Wa		5.7m		Date: April 24
Soil Type	Description		Depth		Tests	Results	
SILT(SM/ML)	- Grey brown - Trace organics - Loose to medium dense		0.00 0.60 .			s > 120 kPa	
						s > 120 kPa	
CLAY (CL/CH)	 Grey brown to orange and red brown Silty and sandy Stiff 				+	N = 4/5/7	
SAND (SM/SC)	Light yellow brownSiltyMedium dense		4.50			N = 1/1/1 N = 2/3/5	
	BOREHOLE TERMINATED		6.50				
I Undisturbed S s Vane Shear S	etration Test - N blows/150mm. incr. ample - Diameter Stated trength rometer Resistance	c Apparer Ø Friction P Wet De w Moistur	ensity		P.L. F	iquid Limit Plastic Limit Plasticity Index inear Shrinkage	Figure 2

A.S.JAMES PTY. LTD.			Location: 109 Old Peterborough Road Borehole 2						
Geote		Peterborough Job No. 122818			ו	Date: April 124			
			Ground W		8 5.8m		Date: April '24		
Soil Type	Description		Depth	ator.	Tests	Results			
FILL	- Disturbed topsoil - Silt		0.00 0.20 .	///					
	- Medium dense				•	s > 120 kPa			
CLAY (CL/CH)	 Grey brown to red brown Silty and sandy Stiff					s > 120 kPa			
					+	N = 4/4/9			
			3.50		+	N = 4/5/6			
SAND (SM/SC)	- Light yellow brown - Silty, clayey - Medium dense				+	N = 7/4/0 Fill 150mm fell 200m	nm		
	BOREHOLE TERMINATED		6.50 . 	<i>! </i>					
+ Standard Pen	etration Test - N blows/150mm. incr.	c Appare	ent Cohesion		L.L. L	iquid Limit			
	ample - Diameter Stated	Ø Frictio				Plastic Limit	Figure		
s Vane Shear S		P Wet D				Plasticity Index	3		
p Pocket Penet	rometer Resistance	w Moistu	ire Content		L.S. I	inear Shrinkage			

A.S.JAMES PTY. LTD.			Location: 109 Old Peterborough Road Borehole 3					
Geoted	chnical Engineers		Peterborough			1		
			Job No.	12281		Only in Cond	Date: Ap	oril '24
Soil Type	Description		Ground W Depth	ater:	Tests	Only in Sand Results		
Оби турс	Description		0.00		10010	results		
SILT(SM/ML)	- Grey - Sandy		0.30 .					
	Medium denseTrace organics					s > 120 kPa		
	, and the second					s > 120 kPa		
						s > 120 kPa		
					- -			
					 -			
					<u>.</u>			
					+	N = 6/8/9		
CLAY (CL/CH)	Grey brown to red and orange brownTrace gravelStiff							
	- Suii							
					 - -			
					+	N = 2/3/3		
			· ·			IN - 2/3/3		
	BOREHOLE TERMINATED		5.50 .		+	N = 5/8/8		
		I						
	tration Test - N blows/150mm. incr.		ent Cohesion			iquid Limit		
	ample - Diameter Stated	Ø Frictio				Plastic Limit	FI	gure 4
s Vane Shear St p Pocket Penetr	rengtn ometer Resistance	P Wet D w Moistu	ensity ire Content			Plasticity Index Linear Shrinkage		7

A.S.JAMES PTY. LTD. Geotechnical Engineers			Location: 109 Old Peterborough Road Borehole 4 Peterborough						
				.					
			Job No. Ground W	1228°	18 NIL		Date: April '24		
Soil Type	Description		Depth	alei.	Tests	Results			
SILT(SM/ML)	- Grey - Sandy - Organics at first - Medium dense		0.00						
CLAY (CH)	 Orange brown and grey brown Silty Firm to stiff		1.10			s = 110 kPa			
CLAY (CL/CH)	- Orange brown /grey				+	N = 6/8/8 N = 5/7/9			
CEAT (OD CIT)	- Silty and sandy - Stiff				+	N = 6/7/9			
	BOREHOLE TERMINATED		6.50 .						
+ Standard Pen	etration Test - N blows/150mm. incr.	c Appare	ent Cohesion	_	L.L. I	iquid Limit			
I Undisturbed S	Sample - Diameter Stated	Ø Frictio	n Angle		P.L.	Plastic Limit	Figure		
s Vane Shear S	Strength	P Wet D	ensity		P.I.	Plasticity Index	5		
p Pocket Pene	trometer Resistance	w Moisture Content			L.S.	Linear Shrinkage			

A.S.JAMES PTY. LTD.		Locat	Location: 109 Old Peterborough Road Borehole 5						
Geote	chnical Engineers	Job N		erborougl 818	n	Date: April '24			
			d Water:		Only	Date: April 24			
Soil Type	Description	Dep	th	Tests					
SILT(SM/ML)	- Grey brown	0.00	· · . · _{' -} · ,	<u>, -</u>					
` ,	- Sandy - Trace organics - Medium dense	0.60		 1 1					
				-	s > 120 kPa				
				-	s > 120 kPa				
CLAY (CL/CH)	- Grey brown red and			+	N = 4/5/8				
	orange brown - Silty, sandy and gravelly - Stiff								
				+	N = 3/3/3				
				+	N = 3/5/5				
	BOREHOLE TERMINATED	6.50			5/5/5				
+ Standard Pene	etration Test - N blows/150mm. incr.	c Apparent Cohes	sion	L.L. I	Liquid Limit				
	ample - Diameter Stated	Ø Friction Angle		P.L.	Plastic Limit	Figure			
s Vane Shear S		P Wet Density			Plasticity Index	6			
p Pocket Penet	rometer Resistance	w Moisture Conte	nt	L.S.	Linear Shrinkage				

A.S.JAMES PTY. LTD.			Location: 109 Old Peterborough Road Borehole 6					
Geote	chnical Engineers		Job No.	Peterl 12281	Data: April 124			
						Seepage at 6.5m	Date: April '24	
Soil Type	Description		Depth		Tests	Results		
			0.00	1,1,1				
SILT(SM/ML)	 Grey brown Sandy and gravelly Trace organics Medium dense		0.70			s > 140 kPa		
						s > 140 kPa		
					+	N = 6/8/10		
CLAY (CL/CH)	 Orange Grey and red brown Silty, sandy and gravelly Stiff Likely cast or very loose zone from 5.8 - 6.5m 							
					+	N = 7/8/12		
					+	N = 1/1/1		
	BOREHOLE TERMINATED		6.50 .					
+ Standard Pen	etration Test - N blows/150mm. incr.	c Appare	ent Cohesion	I	L.L. L	I .iquid Limit		
	Sample - Diameter Stated	Ø Frictio				Plastic Limit	Figure	
s Vane Shear S		P Wet D				Plasticity Index	7	
						inear Shrinkage		